“New Medications and Prescribing Methods for Diabetic Patients”

Jeffrey Stroup, PharmD, BCPS, FCCP
Professor of Medicine
Oklahoma State University Center for Health Sciences
Department of Internal Medicine
Disclosure

I have no relevant financial relationships or affiliations with commercial interests to disclose.
Objectives

• Identify the sites of action of each of the diabetes treatments
• Identify contraindications and side effects of each diabetes treatment
• Differentiate the HbA1C reduction among each of the diabetes treatments
• Identify and differentiate between diabetes treatments that can cause weight gain or weight loss
• Identify preferred antihypertensive agents utilized in patients with diabetes
• Identify preferred lipid agents utilized in patients with diabetes
Guidelines-Goals

<table>
<thead>
<tr>
<th>Variable</th>
<th>ADA Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1C*</td>
<td><7.0% (AACE ≤ 6.5%)</td>
</tr>
<tr>
<td>Preprandial</td>
<td>80-130mg/dL (AACE <110mg/dL)</td>
</tr>
<tr>
<td>Postprandial</td>
<td><180mg/dL (AACE < 140mg/dL)</td>
</tr>
<tr>
<td>LDL*</td>
<td><100mg/dL (<70mg/dL with CVD hx)</td>
</tr>
<tr>
<td>Triglycerides</td>
<td><150mg/dL</td>
</tr>
<tr>
<td>HDL</td>
<td>>40mg/dL (women > 50mg/dL)</td>
</tr>
<tr>
<td>Non-HDL</td>
<td><130mg/dL (If TG ≥ 200mg/dL)</td>
</tr>
<tr>
<td>Blood Pressure*</td>
<td><140/90 mmHg (<130/80 in some)</td>
</tr>
<tr>
<td>Al/Cr</td>
<td><30</td>
</tr>
<tr>
<td>Other</td>
<td>Aspirin, Pneumococcal and Influenza vaccines</td>
</tr>
</tbody>
</table>

Diabetes Care. 2018; 41.
Approach to the Management of Hyperglycemia

Patient/Disease Features

- Risk of hypoglycemia/drug adverse effects
- Disease Duration
- Life expectancy
- Important comorbidities
- Established vascular complications
- Patient attitude & expected treatment efforts
- Resources & support system

Glycemic Targets:

Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S55-S64
Diabetes Education

- Intensive Course for 2-4 weeks with certified diabetic educator
- Follow-up every 3 months, more frequent as needed

Survival Skills

- Insulin-preparation and injection
- Glucometer use and calibration, keeping logs
- Urine/serum ketone testing
- Glucagon emergency kit
- Nutrition

Lifestyle Management:
Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S38-S50
Lifestyle Intervention
(From the Diabetes Prevention Program)

An intensive program with the following specific goals:

- > 7% loss of body weight and maintenance of weight loss
- Dietary fat goal: < 25% of calories from fat
- Calorie intake goal: 1200-1800 kcal/day
- > 150 minutes per week of physical activity

The DPP Research Group, NEJM 346:393-403, 2002
Hyperglycemia

Increased lipolytic activity leading to deleterious effects in both insulin secretion and action

Inappropriate hepatic glucose production

Decreased incretin action leads to ↓ glucose stimulated insulin release

Insulin
DPP-4 INH
Meglitinides
GLP-1R agonists

Insulin secretion

Reduced post-prandial secretion of glucagon

α

Increased post-prandial secretion of glucagon

β

Derangements at the level of the hypothalamus lead to appetite dysregulation and obesity

SGLT-2 Receptor Blockers

Reabsorb filtered glucose

Gut Glucose Absorption

Impaired insulin – mediated Glucose disposal

GLP-1R agonists
DPP-4 inhibitors

CHOLESEVELAM
Acarbose

TZD
Sulfonylureas

- Sulfonylureas increase endogenous insulin secretion
- Sulfonylureas stimulate insulin release by binding to a specific site on the β cell K_{ATP} channel complex (SUR) and inhibiting its activity. K_{ATP} channel inhibition causes cell membrane depolarization and the cascade of events leading to insulin secretion

- Efficacy
 - Decrease fasting plasma glucose 60-80 mg/dl
 - Reduce A1C by 1.5-2.0%

- Other Effects
 - Hypoglycemia
 - Weight gain*
 - No specific effect on plasma lipids or blood pressure
 - Generally the least expensive class of medication

- Medications in this Class:
 - First generation sulfonylureas:
 -氯propamide (Diabinese)
 - tolazamide
 - acetohexamide (Dymelor)
 - tolbutamide
 - Second generation sulfonylureas:
 - glyburide (Micronase, Glynase, and DiaBeta)
 - glimepiride (Amaryl)
 - glipizide (Glucotrol, Glucotrol XL)

Biguanides

• Biguanides decrease hepatic glucose production and increase insulin-mediated peripheral glucose uptake.
• Metformin has specific actions on mitochondrial respiration that reduce intracellular ATP and increase AMP.
• Efficacy
 – Decrease fasting plasma glucose 60-80 mg/dl
 – Reduce A1C 1.5-2.0%
• Other Effects
 – Diarrhea and abdominal discomfort
 – Lactic acidosis if improperly prescribed
 – Cause small decrease in LDL cholesterol level and triglycerides
 – No specific effect on blood pressure
 – No weight gain, with possible modest weight loss
 – B12 deficiency reported
 – Contraindicated in patients with an eGFR below 30 mL/minute/1.73 m².*
 – Starting metformin in patients with an eGFR between 30-45 mL/minute/1.73 m² is not recommended.
• Medications in this Class:
 – metformin (Glucophage)
 – metformin hydrochloride extended release (Glucophage XR)

Thiazolidinediones

- Thiazolidinediones decrease insulin resistance by making muscle and adipose cells more sensitive to insulin. They also suppress hepatic glucose production.
- Thiazolidinediones are ligands for the PPARγ receptor, a nuclear hormone receptor that has two isoforms and is involved in the regulation of genes related to glucose and lipid metabolism.
- Efficacy
 - Decrease fasting plasma glucose ~50-80 mg/dl
 - Reduce A1C ~0.6-1.9%
 - 6 weeks for maximum effect
- Other Effects
 - Weight gain, edema
 - Contraindicated in patients with abnormal liver function or CHF (Class 3-4)
 - Improves HDL cholesterol and plasma triglycerides; usually LDL neutral
- Medications in this Class:
 - pioglitazone (Actos) – bladder cancer warning
 - rosiglitazone (Avandia) – cardiovascular disease warning
 - troglitazone (Rezulin) - taken off market due to liver toxicity

Meglitinides

- Meglitinides stimulate insulin secretion (rapidly and for a short duration) in the presence of glucose.
- Like sulfonylureas, stimulate insulin release by closing K_{ATP} channels in pancreatic β cells.
- **Efficacy**
 - Decreases peak postprandial glucose
 - Decreases plasma glucose 60-70 mg/dl (3.3-3.9 mmol/L)
 - Reduce A1C 1.0-1.5%
- **Other Effects**
 - Hypoglycemia (although may be less than with sulfonylureas if patient has a variable eating schedule)
 - Weight gain
 - No significant effect on plasma lipid levels
 - Safe at higher levels of serum Cr than sulfonylureas
- **Medications in this Class:**
 - repaglinide (Prandin)
 - nateglinide (Starlix)

Alpha-glucosidase Inhibitors

• Alpha-glucosidase inhibitors block the enzymes that digest starches in the small intestine
• α-Glucosidase inhibitors reduce intestinal absorption of starch, dextrin, and disaccharides by inhibiting the action of α-glucosidase in the intestinal brush border
• Efficacy
 – Decrease peak postprandial glucose 40-50 mg/dl
 – Decrease fasting plasma glucose (no sig effect)
 – Decrease A1C 0.5-1.0%
• Other Effects
 – Flatulence or abdominal discomfort
 – No specific effect on lipids or blood pressure
 – No weight gain
 – Contraindicated in patients with inflammatory bowel disease or cirrhosis
• Medications in this Class:
 – acarbose (Precose)
 – miglitol (Glyset)

Effects of Glucagon-like peptide-1

GLP-1 secreted upon the ingestion of food

Promotes satiety and reduces appetite

α cells: ↓ postprandial glucagon secretion

Liver: ↓ glucagon reduces hepatic glucose output

β cells: enhances glucose-dependent insulin secretion

Slows gastric emptying

Incretin Mimetics

• Efficacy
 – Hemoglobin A1c lowering of **0.8%–1.9%**
 – Primarily a postprandial glucose reduction with **exenatide BID**
 – Less postprandial and greater fasting glucose reduction with **liraglutide and weekly products**

• Dose
 – **Exenatide (Byetta):** 5 mcg subcutaneously 2 times/day (thigh, abdomen, or upper arm) 1–60 minutes before morning and evening meals, increase to 10 mcg 2 times/day after 4 weeks if tolerated
 – **Liraglutide (Victoza):** 0.6 mg subcutaneously every day (independent of meals; inject into thigh, abdomen, or upper arm); increase by weekly intervals to 1.2 mg subcutaneously every day; then 1.8 mg subcutaneously every day if needed
Incretin Mimetics

• Dose

- **Exenatide LAR (Bydureon):** 2 mg subcutaneously weekly (thigh, abdomen, or upper arm); two weeks before see effect (6-8 weeks full effect)

- **Albiglutide (Tanzeum):** 30 mg subcutaneously weekly (independent of meals; inject into thigh, abdomen, or upper arm); can increase to 50 mg after 4 weeks if needed.

- **Dulaglutide (Trulicity):** 0.75 mg subcutaneously weekly (independent of meals; inject into thigh, abdomen, or upper arm); can increase to 1.5 mg after 4 weeks if needed.
Incretin Mimetics

• **Adverse Effects**
 – GI: Nausea, Vomiting, Diarrhea
 – Headache
 – Rare: Pancreatitis/Renal dysfunction

• **Contraindications**
 – Gastroparesis
 – Creatinine clearance < 30 mL/minute: Exenatide and Exenatide LAR
 – Medullary thyroid carcinoma (MTC), personal or family history, or in patients with multiple endocrine neoplasia syndrome type 2 (MEN2): Liraglutide and Weekly products
 – Pancreatitis
Incretin Mimetics

Advantages
- Use is associated with **weight loss (2-3 kg)**
- Convenient dosing
- B-cell sparing effect?

Disadvantages
- Parenteral administration
- Gastrointestinal adverse effects
- May reduce the rate and extent of absorption of drugs that require rapid absorption (pain relievers, antibiotics, and oral contraceptives); separate administration by at least 1 hour
- Cost
<table>
<thead>
<tr>
<th>Drug</th>
<th>Byetta</th>
<th>Bydureon</th>
<th>Tanzeum</th>
<th>Trulicity</th>
<th>Victoza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic</td>
<td>exenatide</td>
<td>exenatide</td>
<td>albiglutide</td>
<td>dulaaglutide</td>
<td>liraglutide</td>
</tr>
<tr>
<td>Dosing Frequency</td>
<td>Twice daily</td>
<td>Weekly</td>
<td>Weekly</td>
<td>Weekly</td>
<td>Daily</td>
</tr>
<tr>
<td>Dosing</td>
<td>5 mcg</td>
<td>2 mg</td>
<td>30 mg</td>
<td>0.75 mg</td>
<td>0.6 mg</td>
</tr>
<tr>
<td></td>
<td>10 mcg</td>
<td>50 mg</td>
<td>1.5 mg</td>
<td>1.2 mg</td>
<td>1.8 mg</td>
</tr>
<tr>
<td>Mixing Required</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Waiting Time post mixing</td>
<td>None</td>
<td>None</td>
<td>15 or 30 minutes</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Needle Size</td>
<td>32 g; 4mm</td>
<td>23 g; 8 mm</td>
<td>29 g; 5 mm</td>
<td>29 g; built-in</td>
<td>32 g; 4 mm</td>
</tr>
<tr>
<td>Auto-injector</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Use with basal insulin</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Mechanism of Action of DPP-IV Inhibitors

- Incretin hormones GLP-1 and GIP are released by the intestine throughout the day, and their levels ↑ in response to a meal.

GLP-1=glucagon-like peptide-1; GIP=glucose-dependent insulinotropic polypeptide.
Pharmacology

<table>
<thead>
<tr>
<th></th>
<th>JANUVIA (SITAGLIPTIN)</th>
<th>ONGLYZA (SAXAGLIPTIN)</th>
<th>TRADJENTA (LINAGLIPTIN)</th>
<th>NESINA (ALOGLIPTIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing Frequency</td>
<td>QD</td>
<td>QD</td>
<td>QD</td>
<td>QD</td>
</tr>
<tr>
<td>Dosage</td>
<td>25, 50, 100 mg</td>
<td>2.5 & 5 mg</td>
<td>5 mg</td>
<td>6.25, 12.5, 25 mg</td>
</tr>
<tr>
<td>Half-life (hours)</td>
<td>12.4</td>
<td>2.5 (active metabolite=3.1)</td>
<td>> 100</td>
<td>21 (active metabolite)</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Not extensively metabolized</td>
<td>CYP3A4/5</td>
<td>Not extensively metabolized</td>
<td>CYP2D6/3A4</td>
</tr>
<tr>
<td>Majority of Elimination</td>
<td>Renal</td>
<td>Renal</td>
<td>Bile</td>
<td>Renal</td>
</tr>
<tr>
<td>Dose Adjustment in CKD/ESRD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Combination Products</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
DPP-IV Inhibitors
Good vs. Bad

- Low risk of hypoglycemia
- Weight neutral
- Once daily ORAL
- Well tolerated

URI
- Nasal pharyngitis
- Headache
- Hypersensitivity
- Pancreatitis
Incretin Comparison

<table>
<thead>
<tr>
<th></th>
<th>GLP-1 Activation</th>
<th>DPP-IV Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Glucagon</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Gastric emptying</td>
<td>+++</td>
<td>--</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>+/-</td>
<td>--</td>
</tr>
<tr>
<td>Nausea/Vomiting</td>
<td>+++</td>
<td>--</td>
</tr>
<tr>
<td>Weight</td>
<td>Loss</td>
<td>No Change</td>
</tr>
<tr>
<td>Route of admin</td>
<td>Injection</td>
<td>Oral</td>
</tr>
</tbody>
</table>
Other Available Agents

• **Pramlintide (Symlin®)**
 – Used in type 1 and type 2 diabetes
 – Amylin analog (hormone co-secreted with insulin)
 – Injectable three times daily
 – Weight loss

• **Colestevemal (Welchol®)**
 – Lipid agent
 – Used in type 2 diabetes
 – A1c reduction ~0.5%

• **Bromocriptine (Cycloset®)**
 – Dopamine receptor agonist
 – Used in type 2 diabetes
 – A1c reduction ~0.5%
Sodium- Glucose Cotransporters

<table>
<thead>
<tr>
<th></th>
<th>SGLT1</th>
<th>SGLT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Mostly intestine with some kidney</td>
<td>Almost exclusively kidney</td>
</tr>
<tr>
<td>Sugar Specificity</td>
<td>Glucose or galactose</td>
<td>Glucose</td>
</tr>
<tr>
<td>Affinity for glucose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Km</td>
<td>0.4 Mm</td>
<td>2 Mm</td>
</tr>
<tr>
<td>Capacity for glucose transport</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>
| **Role** | Dietary glucose absorption
Renal glucose reabsorption | Renal glucose reabsorption |

Targeting the Kidney

Effects of SGLT2 Inhibitors

- Inhibition of renal tubular Na\(^+\)-glucose cotransporter
- Reversal of hyperglycemia
- Reversal of “glucotoxicity”

- Insulin sensitivity in muscle
 - GLUT4 translocation
 - Insulin signaling

- Insulin sensitivity in liver
 - Glucose-6-phosphatase

- Gluconeogenesis
 - Decreased Cori Cycle
 - PEP carboxykinase

- Improved beta cell function

Sodium-Glucose co-Transporter 2 Inhibitors

• Mechanism of Action
 – Blocks SGLT-2 receptors in the proximal tubule thus inhibiting renal reabsorption of glucose.
 – This results in glycosuria, as well as salt and water loss.

• Efficacy
 – Hemoglobin A1c lowering of 0.7%–1.1%.
 – Lowers fasting and postprandial glucose levels
 – Weight loss
 – BP reduction

• Dose
 – Canagliflozin (Invokana): 100 mg once daily; may increase to 300 mg
 – Dapagliflozin (Farxiga): 5 mg once daily; may increase to 10 mg
 – Empagliflozin (Jardiance): 10 mg daily once daily; may increase to 25 mg
Dose Adjustments for Renal Insufficiency

<table>
<thead>
<tr>
<th>eGFR (mL/min/1.73m²)</th>
<th>Canagliflozin (Invokana)</th>
<th>Dapagliflozin (Farxiga)</th>
<th>Empagliflozin (Jardiance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 60</td>
<td>No dosage adjustment</td>
<td>No dosage adjustment</td>
<td>No dosage adjustment</td>
</tr>
<tr>
<td>45 – 60</td>
<td>100mg daily</td>
<td>Not recommended for eGFR <60</td>
<td>No dosage adjustment</td>
</tr>
<tr>
<td>< 45</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>Not recommended</td>
</tr>
</tbody>
</table>

JARDIANCE™ [prescribing information]. Boehringer Ingelheim Pharmaceuticals, Inc. & Eli Lilly and Company; 2014.
Figure 5. SGLT-2 Inhibition: Mediators of CV and Renal Effects

SGLT-2 inhibition

Glycosuria

- Negative caloric balance
 - ↓ Total body fat mass
 - ↓ Epicardial fat
 - ↓ Inflammation
 - ↓ Fibrosis
 - ↓ Inflammation
 - ↓ Glucose toxicity

- ↓ HbA1c

- ↑ Uricosuria
 - ↓ Plasma uric acid
 - ↑ Cardiac contractility

- ↓ Blood pressure

- ↑ Urinary volume
 - ↓ Blood pressure
 - ▼ Arterial stiffness
 - ↓ Myocardial stretch
 - ↓ Ventricular arrhythmias
 - Activation of ACE2 - Ang1/7
 - ↓ Tubuloglomerular feedback
 - ↓ Intraglomerular hypertension
 - ↓ Hyperfiltration

Cardiac & Renal Protection
SGLT-2 Inhibitors

Adverse Effects

- Genital mycotic infections
 - Women: 5.4-11.4% (SGLT2) vs. 1.5-3.2% (placebo)
 - Men (more common if uncircumcised): 1.6-4.2% (SGLT2) vs. 0.3-0.6% (placebo)

- Urinary tract infections
 - 4.3-9.3% (SGLT2) vs. 3.7-7.6% (placebo)

- Polyuria

- Risk of hypotension and hypovolemia due to osmotic diuresis

- Euglycemic ketoacidosis (EKA, euDKA)

Invokana PI; Farxiga PI; Jardiance PI
SGLT-2 Inhibitor Summary

Advantages
- Once daily oral administration
- Effect independent of insulin secretion or insulin resistance
- Low risk of hypoglycemia
- Decreases both FBG and PPG
- Weight Loss (2-3kg)
- Blood pressure lowering (~5 mmHG SBP)

Concerns
- Polyuria (additional 200-400 mL/day)
- Dehydration
- Hypotension
- Genital mycotic infection
- Urinary tract infection
The History of Insulins

- 1889: Pancreas & DM
- 1921: Extraction of insulin
- 1922: 1st successful use of insulin
- 1930’s: Joslin advocates tight glycemic control
- 1936: PZI insulin
- 1946: NPH insulin
- 1951: Lente insulins
- 1970’s: Single source insulins
- 1980’s: Premixed insulin Human insulin
- 1990’s: Insulin Analogs (Quick-acting insulin) DCCT/UKPDS
- 2000: Basal Insulin DCCT/EDIC
- 2006: Inhaled Insulin
Insulin Therapy in Type 2 Diabetes

Arguments for Earlier Use

Pros
- No limit to potential glycemic lowering.
- Virtually 100% responder rate.
- Large doses can overcome insulin resistance.
- Addresses only one of the two underlying endocrinologic defects in those with Type 2 diabetes, but can overcome the other.

Cons
- Patients may be reluctant to initiate insulin earlier in the course of therapy due to their fear of injections and concerns about hypoglycemia and weight gain.
- Patients may view their transition to insulin as a signal that they have ‘failed’ and/or that their diabetes has worsened.
- Physicians and nurses need to spend considerable time teaching patients about the various types of insulin, how to mix and administer the agents, how to recognize and manage hypoglycemic events, as well as the intensive monitoring required to attain target goals.
- More difficult to understand and comply with an insulin regimen vs. oral medications.
Insulin analogues. Modifications of native insulin can alter its pharmacokinetic profile. Reversing amino acids 28 and 29 in the B chain (lispro) or substituting Asp for Pro28B (aspart) gives analogues with reduced tendencies for molecular self-association that are faster acting. Altering Asp3B to Lys and Lys29B to Glu produces an insulin (glulisine) with a more rapid onset and a shorter duration of action. Substituting Gly for Asn21A and lengthening the B chain by adding Arg31 and Arg32 produces a derivative (glargine) with reduced solubility at pH 7.4 that is, consequently, absorbed more slowly and acts over a longer period of time. Deleting Thr30B and adding a myristoyl group to the ε-amino group of Lys29B (detemir) enhances reversible binding to albumin, thereby slowing transport across vascular endothelium to tissues and providing prolonged action. Insulin degludec is Lys29B(Ne-hexadecandioyl-γ-Glu) des(B30) human insulin. When degludec is injected subcutaneously, it forms multihexameric complexes that slow absorption; degludec also binds well to albumin; these two characteristics contribute to the prolonged effect of degludec (>24 h at steady state).
<table>
<thead>
<tr>
<th>Insulin</th>
<th>Onset</th>
<th>Peak</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lispro, Aspart, Glulisine</td>
<td>5-15 mins</td>
<td>1-2 hrs</td>
<td>3-5 hrs</td>
</tr>
<tr>
<td>Inhaled Insulin</td>
<td>Minutes</td>
<td>12-15 min</td>
<td>2-3 hrs</td>
</tr>
<tr>
<td>Human Regular</td>
<td>30-60 mins</td>
<td>2-4 hrs</td>
<td>6-8 hrs</td>
</tr>
<tr>
<td>Human NPH</td>
<td>1-2 hrs</td>
<td>6-12 hrs</td>
<td>10-16 hrs</td>
</tr>
<tr>
<td>Insulin Detemir</td>
<td>3-4 hrs</td>
<td>Peakless</td>
<td>12-24 hrs</td>
</tr>
<tr>
<td>Insulin Glargine</td>
<td>4-6 hrs</td>
<td>Peakless</td>
<td>~24 hrs</td>
</tr>
<tr>
<td>Glargine U300</td>
<td>6 hrs</td>
<td>Peakless</td>
<td>~30-36 hrs</td>
</tr>
<tr>
<td>Insulin Degludec</td>
<td>6 hrs</td>
<td>Peakless</td>
<td>~42 hrs</td>
</tr>
</tbody>
</table>
Profiles Human Insulin and Analogs

Plasma insulin levels vs. Hours

- Aspart, Lispro, Glulisine
- Regular
- NPH
- Detemir
- Glargine

Mimicking Nature

Evening Basal Insulin

Bedtime NPH

\[\mu U/mL \]

Time of day

B=breakfast; L=lunch; D=dinner
Split-Mixed Regimen

Human Insulins

\[\text{Normal pattern} \]

\[\mu U/mL \]

\[B=\text{breakfast}; \ L=\text{lunch}; \ D=\text{dinner} \]
Multiple Daily Injections

Human Insulins

- Regular
- NPH

µU/mL

Time of day

B=breakfast; L=lunch; D=dinner
Basal-Bolus Insulin Treatment

With Insulin Analogues

- Lispro, glulisine, or aspart
- Glargine qd or Detemir qd or bid

B=breakfast; L=lunch; D=dinner
How To Initiate Insulin Therapy?

• Type 1 Patients
 – Utilize a Basal/Bolus Approach
 • Target Fasting & Postprandial Blood Sugars

• Type 2 Patients Failing Oral Therapy
 – 1st Target Fasting Blood Sugar
 • Forced Titration Schedule
Initiating Insulin Therapy

• Empiric Dosing (daily dose)
 – Insulin Analogues
 • Type 1: 0.5 units/kg/d
 • Type 2: 0.7-1.0 units/kg/d (obesity, activities)

• Give 50% as Basal Insulin

• Give 50% as Bolus Insulin
 – Split into three doses
 – Adjust accordingly:
 • Carbohydrate Counting
Initiating Basal Insulin Therapy

• Suppresses glucose production between meals and overnight
• Continue oral agent(s) at same dosage (may eventually reduce)
• Add single bedtime insulin dose (10–20 Units) [weight based at 0.2U/kg]
 – Glargine
 – Detemir
 – NPH
• Adjust dose according to Fasting Blood Sugars
• Adjust the insulin dose every 3-4 days as needed
 – Increase 2 U if FBG 100–120 mg/dL
 – Increase 4 U if FBG 121–140 mg/dL
 – Increase 6 U if FBG 141–180 mg/dL
 – Increase 8 U if FBG >180 mg/dL
• Treat to target (usually FPG 80–100 mg/dL)
Table 1—Forced weekly insulin titration schedule

Start with 10 IU/day bedtime basal insulin and adjust weekly

<table>
<thead>
<tr>
<th>Mean of self-monitored FPG values from preceding 2 days</th>
<th>Increase of insulin dosage (IU/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥180 mg/dl (10 mmol/l)</td>
<td>8</td>
</tr>
<tr>
<td>140–180 mg/dl (7.8–10.0 mmol/l)</td>
<td>6</td>
</tr>
<tr>
<td>120–140 mg/dl (6.7–7.8 mmol/l)</td>
<td>4</td>
</tr>
<tr>
<td>100–120 mg/dl (5.6–6.7 mmol/l)</td>
<td>2</td>
</tr>
</tbody>
</table>

Riddle MC et al. *Diabetes Care*. 2003;26:3080-3086
Prandial Insulin Dose Adjustments

• Prandial insulin limits hyperglycemia after meals
• Set dose with meals
 – Example dosing:
 • 2-5 units with each meal to start
• Carbohydrate counting
 – Typical start:
 • 1 unit for every 10-15g of carbohydrate
• Correction scales
Initiating Pre-Meal Dosing

- Discontinue SFU or Meglitinide
- Initiate with the largest meal
- Once at goal, move to the next largest meal...
Mixed Insulins

• Humulin 70/30
 – 70% NPH, 30% Regular

• Humulin 50/50
 – 50% NPH, 50% Regular

• Humalog Mix 75/25
 – 75% lispro protamine, 25% lispro

• Humalog Mix 50/50
 – 50% lispro protamine, 50% lispro

• Novolin 70/30
 – 70% NPH, 30% Regular

• Novolog Mix 70/30
 – 70% aspart protamine, 30% aspart
- Total surface area of lungs = 140m²
- Alveoli = regulation tennis court
- Bronchi = blue towel
Insulin Human Inhalation Powder

• Inhaled, ultra-rapid-acting mealtime insulin
• Indicated for adults with T1DM or T2DM
• Administer at beginning of each meal
• 4 (blue), 8 (green), and 12 (yellow) unit packets
• Foil package; 2 blister cards, 15 cartridges each; strips of three; 2 inhalers.

• Dosing
 – Insulin-naive patients: 4 units before each meal
 – Prandial SC insulin users: convert 1:1 (round up to nearest 4 units)

Afrezza Prescribing Information. October 2014.
<table>
<thead>
<tr>
<th>Insulin</th>
<th>Onset Duration</th>
<th>Maximum Dose/Injection (units)</th>
<th>Benefits</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| Regular U-500 | 30 min up to 8 hr | 100 | - Highly concentrated
- Useful in pumps
- Sustained glycemic control with minimal weight gain
- Pen formulation resolves several medication safety issues | - Long duration of action, potential stacking
- Pumps are programmed for U-100 insulins
- Bolus MUST be 30-60 minutes prior to meals
- Onset too long to be useful as correction dose |
| Glargine U-300 | 1-6 hr 24-36 hr | 80 | - Decreased hypoglycemia
- Longer duration of action
- Slightly more dosing flexibility (dosing window is q 24 ± 3 hours) | - Decreased bioavailability (~10% increase in dose for conversion from U-100 to U-300)
- Small pen size (1.5 ml) supplying 450 units total |
| Degludec U-200 | 1-9 hr > 42 hr | 160 | - Longest duration of action
- Large dose per injection
- Bioequivalent to degludec U-100 (no dose titration between degludec formulations)
- 3 ml pen size supplying 600 units total | - Must down titrate dose (~10%) when converting from other basal insulins
- 2 to 3 days to reach steady state
- Formulary access/cost |
| Lispro U-200 | 10-30 min 3-5 hr | 60 | - Useful when large prandial doses required (decreased volume of MDIs)
- 3 ml pen size supplying 600 units total | - Not yet FDA-approved for pump use |

MDI = multiple daily injections.
Treatment Guideline Algorithms

- American Diabetes Association
- American Association of Clinical Endocrinologists*
Approach to the management of hyperglycemia

Patient / Disease Features

- Risks potentially associated with hypoglycemia and other drug adverse effects
 - More stringent: low
 - A1C 7%
 - Less stringent: high

- Disease duration
 - Newly diagnosed
 - Long-standing

- Life expectancy
 - Long
 - Short

- Important comorbidities
 - Absent
 - Few / Mild
 - Severe

- Established vascular complications
 - Absent
 - Few / Mild
 - Severe

- Patient attitude and expected treatment efforts
 - Highly motivated, adherent, excellent self-care capacities
 - Less motivated, nonadherent, poor self-care capacities

- Resources and support system
 - Readily available
 - Limited

Usual Not Modifiable

Potentially Modifiable
Healthy eating, weight control, increased physical activity, and diabetes education

Mono-therapy
- Efficacy
- Hypo risk
- Weight
- Side effects
- Costs

Dual therapy
- Efficacy
- Hypo risk
- Weight
- Side effects
- Costs

Triple therapy
- Combination injectable therapy

Metformin
- high
- low
- neutral / loss
- GI / lactic acidosis
- low

If A1C target not achieved after ~3 months of monotherapy, proceed to 2-drug combination (order not meant to denote any specific preference—choice dependent on a variety of patient- and disease-specific factors)

<table>
<thead>
<tr>
<th>Metformin +</th>
<th>Metformin +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonylurea</td>
<td>Thiazolidinedione</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>moderate risk</td>
<td>low risk</td>
</tr>
<tr>
<td>gain</td>
<td>gain</td>
</tr>
<tr>
<td>hypoglycemia</td>
<td>edema, HF, fx</td>
</tr>
<tr>
<td>low</td>
<td>rare</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metformin +</th>
<th>Metformin +</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPP-4 inhibitor</td>
<td>SGLT2 inhibitor</td>
</tr>
<tr>
<td>intermediate</td>
<td>intermediate</td>
</tr>
<tr>
<td>low risk</td>
<td>low risk</td>
</tr>
<tr>
<td>loss</td>
<td>loss</td>
</tr>
<tr>
<td>neutral</td>
<td>GU, dehydration</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metformin +</th>
<th>Metformin +</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP-1 receptor agonist</td>
<td>Insulin (basal)</td>
</tr>
<tr>
<td>high</td>
<td>highest</td>
</tr>
<tr>
<td>low risk</td>
<td>high risk</td>
</tr>
<tr>
<td>loss</td>
<td>gain</td>
</tr>
<tr>
<td>GI</td>
<td>hypoglycemia</td>
</tr>
<tr>
<td>variable</td>
<td>high</td>
</tr>
</tbody>
</table>

If A1C target not achieved after ~3 months of dual therapy, proceed to 3-drug combination (order not meant to denote any specific preference—choice dependent on a variety of patient- and disease-specific factors)

<table>
<thead>
<tr>
<th>Metformin +</th>
<th>Metformin +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonylurea + TZD</td>
<td>DPP-4-i</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td>SGLT2-i</td>
<td>GLP-1-RA</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td>DPP-4-i</td>
<td>GLP-1-RA</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td>Insulin§</td>
<td>Insulin§</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
</tr>
</tbody>
</table>

If A1C target not achieved after ~3 months of triple therapy and patient (1) on oral combination, move to injectables; (2) on GLP-1-RA, add basal insulin, or (3) on optimally titrated basal insulin, add GLP-1-RA or mealtime insulin. In refractory patients consider adding TZD or SGLT2-i:

Basal insulin +
- Mealtime insulin or GLP-1-RA
Basal insulin
(usually with metformin +/- other noninsulin agent)

- Start: 10 U/day or 0.1-0.2 U/kg/day
- Adjust: 10-15% or 2-4 U once-twice weekly to reach FBG target.
- For hypo: Determine and address cause; ↓ dose by 4 U or 10-20%.

If not controlled after FBG target is reached (or if dose >0.5 U/kg/day), treat PPG excursions with mealtime insulin. (Consider initial GLP-1RA trial.)

Add 1 rapid insulin injection before largest meal

- Start: 4 U, 0.1 U/kg, or 10% basal dose. If A1C <8%, consider ↓ basal by same amount.
- Adjust: ↑ dose by 1-2 U or 10-15% once-twice weekly until SMBG target reached.
- For hypo: Determine and address cause; ↓ corresponding dose by 2-4 U or 10-20%.

Change to premixed insulin twice daily

- Start: Divide current basal dose into 2/3 AM, 1/3 PM or 1/2 AM, 1/2 PM,
- Adjust: ↑ dose by 1-2 U or 10-15% once-twice weekly until SMBG target reached.
- For hypo: Determine and address cause; ↓ corresponding dose by 2-4 U or 10-20%.

Add ≥2 rapid insulin injections before meals (“basal–bolus”)

- Start: 4 U, 0.1 U/kg, or 10% basal dose/meal. If A1C <8%, consider ↓ basal by same amount.
- Adjust: ↑ dose by 1-2 U or 10-15% once-twice weekly until SMBG target reached.
- For hypo: Determine and address cause; ↓ corresponding dose by 2-4 U or 10-20%.

If not controlled, consider basal-bolus.
ALGORITHM FOR ADDING/INTENSIFYING INSULIN

START BASAL (Long-Acting Insulin)

- **A1C < 8%**
 - TDD: 0.1–0.2 U/kg

- **A1C > 8%**
 - TDD: 0.2–0.3 U/kg

Insulin titration every 2–3 days to reach glycemic goal:
- Fixed regimen: Increase TDD by 2 U
- Adjustable regimen:
 - FBG > 180 mg/dL: add 20% of TDD
 - FBG 140–180 mg/dL: add 10% of TDD
 - FBG 110–139 mg/dL: add 1 unit
 - If hypoglycemia, reduce TDD by:
 - BG < 70 mg/dL: 10% – 20%
 - BG < 40 mg/dL: 20% – 40%

Consider discontinuing or reducing sulfonylurea after starting basal insulin (basal analogs preferred to NPH)

INTENSIFY (Prandial Control)

Add GLP-1 RA
- Or SGLT-2i
- Or DPP-4i

Add Prandial Insulin

- **Basal Plus 1, Plus 2, Plus 3**
 - Begin prandial insulin before largest meal
 - If not at goal, progress to injections before 2 or 3 meals
 - Start: 10% of basal dose or 5 units

- **Basal Bolus**
 - Begin prandial insulin before each meal
 - 50% Basal / 50% Prandial TDD 0.3–0.5 U/kg
 - Start: 50% of TDD in three doses before meals

Glycemic Control Not at Goal

Glycemic Goal:
- <7% for most patients with T2D; fasting and premeal
- BG < 110 mg/dL; absence of hypoglycemia
- A1C and FBG targets may be adjusted based on patient’s age, duration of diabetes, presence of comorbidities, diabetic complications, and hypoglycemia risk

Insulin titration every 2–3 days to reach glycemic goal:
- Increase prandial dose by 10% or 1-2 units if 2-h postprandial or next premeal glucose consistently > 140 mg/dL
- If hypoglycemia, reduce TDD basal and/or prandial insulin by:
 - BG consistently < 70 mg/dL: 10% – 20%
 - Severe hypoglycemia (requiring assistance from another person) or BG < 40 mg/dL: 20% – 40%

COPYRIGHT © 2016 AACE MAY NOT BE REPRODUCED IN ANY FORM WITHOUT EXPRESS WRITTEN PERMISSION FROM AACE.
Which of the following drugs used in treatment of Type 2 DM is consistently associated with weight loss?

1. Sulfonylureas
2. Thiazolidinediones
3. Glucagon-like peptide 1 analogs
4. Insulin
Which of the following treatments for Type 2 DM is associated with the most profound reduction in HbA1c?

1. Metformin
2. Insulin
3. Sulfonylureas
4. Thiazolidinediones
Which of the following agents is contraindicated with Class 3 or 4 Heart Failure?

1. Thiazolidinediones
2. Insulin
3. Sulfonylureas
4. Bromocriptine
Which of the following classes of diabetes medications works primarily at the level of the kidney?

1. DPP-IV inhibitors
2. Sulfonylureas
3. Insulin
4. SGLT-2 inhibitors
ADA Recommendations-HTN

Recommendations for the Treatment of Confirmed Hypertension in People With Diabetes

- Initial BP between 140/90 mmHg and 160/100 mmHg
 - Start one agent
 - Albuminuria
 - No: Start one drug: ACEI, ARB, CCB, Diuretic
 - Yes: Start two agents

- Initial BP ≥ 160/100 mmHg
 - Lifestyle management
 - Albuminuria
 - No: Start drug from 2 of 3 options: ACEI or ARB, CCB, Diuretic
 - Yes: Start: ACEI or ARB and CCB, Diuretic

Assess BP Control and Adverse Effects

- Treatment tolerated and target achieved
 - Continue therapy
- Not meeting target
 - Add agent from complementary drug class: ACEI or ARB, CCB, Diuretic
 - Adverse effects
 - Consider change to alternative medication: ACEI or ARB, CCB, Diuretic
 - Adverse effects
 - Not meeting target or adverse affects using a drug from each of three classes
 - Consider Addition of Mineralocorticoid Receptor Antagonist; Refer to Specialist With Expertise in BP Management
- Not meeting target on two agents
 - Treatment tolerated and target achieved: Continue therapy
Table 9.2—Recommendations for statin and combination treatment in adults with diabetes

<table>
<thead>
<tr>
<th>Age</th>
<th>ASCVD</th>
<th>Recommended statin intensity and combination treatment*</th>
</tr>
</thead>
<tbody>
<tr>
<td><40 years</td>
<td>No</td>
<td>None†</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If LDL cholesterol ≥ 70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)#</td>
</tr>
<tr>
<td>≥40 years</td>
<td>No</td>
<td>Moderate‡</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If LDL cholesterol ≥ 70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)</td>
</tr>
</tbody>
</table>

*In addition to lifestyle therapy. †For patients who do not tolerate the intended intensity of statin, the maximally tolerated statin dose should be used. ‡Moderate-intensity statin may be considered based on risk-benefit profile and presence of ASCVD risk factors. ASCVD risk factors include LDL cholesterol ≥ 100 mg/dL (2.6 mmol/L), high blood pressure, smoking, chronic kidney disease, albuminuria, and family history of premature ASCVD. ‡High-intensity statin may be considered based on risk-benefit profile and presence of ASCVD risk factors. Adults aged < 40 years with prevalent ASCVD were not well represented in clinical trials of non-statin-based LDL reduction. Before initiating combination lipid-lowering therapy, consider the potential for further ASCVD risk reduction, drug-specific adverse effects, and patient preferences.
High- and Moderate-Intensity Statin Therapy

<table>
<thead>
<tr>
<th>High-intensity statin therapy (lowers LDL cholesterol by ≥50%)</th>
<th>Moderate-intensity statin therapy (lowers LDL cholesterol by 30% to 50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin 40–80 mg</td>
<td>Atorvastatin 10–20 mg</td>
</tr>
<tr>
<td>Rosuvastatin 20–40 mg</td>
<td>Rosuvastatin 5–10 mg</td>
</tr>
<tr>
<td></td>
<td>Simvastatin 20–40 mg</td>
</tr>
<tr>
<td></td>
<td>Pravastatin 40–80 mg</td>
</tr>
<tr>
<td></td>
<td>Lovastatin 40 mg</td>
</tr>
<tr>
<td></td>
<td>Fluvastatin XL 80 mg</td>
</tr>
<tr>
<td></td>
<td>Pitavastatin 2–4 mg</td>
</tr>
</tbody>
</table>

Once-daily dosing. XL, extended release.

Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes - 2018. *Diabetes Care* 2018; 41 (Suppl. 1): S86-S104
COMPICATIONS-CENTRIC MODEL FOR CARE OF THE OVERWEIGHT/OBESE PATIENT

STEP 1 EVALUATION FOR COMPLICATIONS AND STAGING

NO COMPLICATIONS
BMI ≥ 25

COMPLICATIONS

CARDIOMETABOLIC DISEASE | BIOMECHANICAL COMPLICATIONS

BMI 25–26.9

MILD TO MODERATE

BMI ≥ 27: Stage Severity of Complications

SEVERE

STEP 2 SELECT:

Therapeutic targets for improvement in complications + Treatment modality + Treatment intensity based on staging

Lifestyle Therapy:
Physician/RD counseling, web/remote program, structured multidisciplinary program

Medical Therapy (BMI ≥ 27):
Phentermine, orlistat, lorcaserin, phentermine/topiramate ER, naltrexone/bupropion, liraglutide 3 mg

Surgical Therapy (BMI ≥ 35):
Gastric banding, sleeve, or bypass

STEP 3
If therapeutic targets for complications not met, intensify lifestyle, medical, and/or surgical treatment modalities for greater weight loss.
Which of the following agents is preferred as an antihypertensive in patients with diabetes?

1. Beta blockers
2. ACE Inhibitors
3. Loop Diuretics
4. Hydralazine
QUESTIONS